Real time fluid imaging with an integrated single well seismic/EM **sysiem SEG 2003** E.L. Majer, Lawrence Berkeley National Laboratory; R.M. Ostermeier, Shell; K.M. Strack*, KMS Technologies

Outline

- Setting the scene
- Project scope
- Progress example
- Perspective

Funded by: DOE, DeepLook (bp, Chevron, Conoco, Shell, Texaco), Shell/Agip

<35%

70%

Needs to meet challenge

- Accurate fluid characterization of commercial quantities up to 200 m away from well bore
 Independent structural information (seismic)
 Measure of Fluid properties (EM)
 Coupled solution for fluid imaging
- Start integrating EM into existing seismic systems
- Commercial solution
 Easy to use and deploy
 Global accessibility
 High resolution (Equivalent to Logs)
 Rapid results for drilling guidance

Project Objectives & Goals

<u>Create critical mass to combine state-of-art</u> <u>technology</u>

The methods

- Develop EM single well technology (starting with Pre-feasibility)
- Improve single in seismic
- Integrate the systems & methodology
- Demonstrate

Class of problems

Find pockets of hydrocarbons / structural

anhydrite

в

Control / steer well path

Control safety / environmental aspects

LWD/MWD geosteering examples

Most targets are at sub-seismic scale

After Marshall et al., 2000

Geosteering in a seismic section

(Breton, et al.,2002)

Outline

- Setting the scene
- Project scope
- Progress example
- Perspective

Funded by: DOE, DeepLook (bp, Chevron, Conoco, Shell, Texaco), Shell/Agip

Project phases:

- Pre-feasibility (Can we do it?)
- Feasibility (Can we design it?)
- Prototype (Can we build it?) next year
- Field test (Can we demonstrate it?)
- Commercialization

Integrate with seismic single well system

Project Deliverables -A Commercial Solution DRILLING DECISIONS

Acquisition

Similar to known systemsEasy to QC

seismic integrated real time image

- Processing within 24 hours
 Little difference from known methods
 - Stable results
- Post-processing

conductivity image

integrated model

Scientific tasks

Modeling

EM system modeling (KMS)

Seismic sensitivity (Sandia)

EM Sensitivity (LBNL)

EM – Seismic system Integration (KMS- LBNL)

• Field tests:

Single well tube waves

EM noise

Modeling

 Shell provided three models with varying geometry and parameters for EM and Seismic modeling

- **Velocity (P and S)**
- **Density**
- Conductivity
- thickness
- **Source-receiver distances**

— 218 combinations

Outline

- Setting the scene
- Project scope
- Progress example
- Perspective

Funded by: DOE, DeepLook (bp, Chevron, Conoco, Shell, Texaco), Shell/Agip

Modeling - Seismic

 Focus on bedded and faulted models Velocity (P and S)

Examine sensitivity as a function of
 Density
 Thickness
 Source-receiver distances

Seismic Modeling

Sensitivity of Seismic Imaging

Modeled critical parameters for industry cases

Different source responses
 * Point versus torque
 * Pressure versus 3-C motion
 Receiver levels
 * N-Levels
 * Full elastic 3-D solution

Corner Diffraction Responses

Case 1

Case 2

Single-Well Seismic Responses

Min / max source-receiver offset: 1 m / 4 m Tool orientations: 45°, 90°

Axial Trans

Tool within bed

Tool approaching bed

Two Moment Sources

Min / max source-receiver offset: 1 m / 4 m

Explosion source

Torque source

Seismic Modeling: Results

Sensitivity of Seismic Imaging **X** To adequately image: → Multi-component and Multi-receiver ***** PP, PS, SS, SP Separation **Directionality Trace summing, subtracting, rotation** \rightarrow High Frequency (500 to 1KHZ) *****Reduce arrival interference **Tube wave reduction** → Pure mode sources *****Isotropic best for amplitude preservation **Torque SH give limited conversion (good)**

EM modeling

• 3D modeling

- **Benchmarked codes**
- **≥**3D response to selected benchmarks

Perturbation analysis

- **Directionality**
- Integration with seismic (real time goal)

Directionality sensitivity

EM Tool Design

Model: Horizontal well

•Target thickness, resistivity

3-D EM Modeling

Relative error vs. frequency with a z-directed magnetic dipole at the transmitter and a x-directed (a) and z-directed dipole (b) at the receivers.

x 10⁻⁴ Problem 1: Receiver: z-directed dipole, below fault boundary

EM-Seismic System Integration

Objective

Assess current state-of-art capabilities for achieving critical bandwidth, S/N levels and sensitivity

Tasks

- Improve seismic source
- Increase reliability
- Integrate EM system with Seismic
- Advance towards real time
- **Example 7** Test in field environment

Lost Hills SWSI tube wave test with AC orbital vibrator & INEEL TWS

Tube wave

S-wave

With TWS

Without TWS

Borehole Electronics Modifications

Fiber Optic

Single mode to Multi-mode through sources (EM noise reduction)

Orientation
 Open hole
 Cased hole

Source Modifications

Orbital Source Modification → 4.25" to 3.5" → 400 Hz up to 1000 Hz → Fiber optic feed through → Maintain power

New source (3.5", 1000 Hz)

Motor Assembly Parts

Real Time Acquisition and Processing Electronics

• Multi-channel High **Speed Acquisition 24-bit** 32K Sample rate Analog/digital **Real Time C**GPS interface Internet access

Coil: EIVI sensor Sei Up

OD: 2 1/2", 63.5 mm Length: 96.5 mm Weight: 8.5 kg Temp. range: 125 C Max sampling rate: 8 kHz Bandwidth: 3.6 kHz Dynamic range: 106 dB Input noise: 1.8 microV

OD: 3 1/4 " 400 turns, single layer copper wire OD 0.5 mm Ferrite core (toroids) Preamplifier 4nV/sqr Hz, 6000 gain Power from HD Digitizer

For smooth down hole travel

The Coil Sensor

Input noise with 24 dB amplification

Noise results in extended dynamic range

- Sensor design
- ·Filtering
- Stacking etc
- Increase transmitter moment

0.001

Time (seconds)

10

0.001

E-18

1 E-8

in

System integration accomplishments

- Tube wave suppression implemented
- Seismic source modifications
 3.5" source from 4.25", >freq.
- Improved Fiber Optic System
 Mode improvement
 - →Mode improvement
- Integrate KMS-Technologies' s EM coil
- Real time hardware implemented
- Field tests (noise) verify use of current technology

Outline

- Setting the scene
- Project scope
- Progress example
- Perspective

Funded by: DOE, DeepLook (bp, Chevron, Conoco, Shell, Texaco), Shell/Agip

Summary

- Industry leveraged project
- Addresses high priority needs
- Utilize existing technology & augment with specific expertise where needed
- Commercialization path identified
- Several breakthroughs accomplished
- Successfully moved from Conceptual Design → Feasibility → Prototype

Acknowledgement

- Our sponsors: DOE, DeepLook (bp, Chevron, Conoco, Shell, Texaco), Shell/Agip
- Collaborators: Dave Aldridge, Greg Newman, Chester Weiss of Sandia and Dave Alumbaugh of University of Wisconsin.

Peers at LBNL, KMS Technologies and Shell